37

Soil Microorganisms and Nematodes for Bioremediation and Amelioration

of dissolved zinc and nanoparticle-specific effects. Environmental Science and Pollution

Research, 23(10), 9669–9678. Springer. doi: 10.1007/s11356-015-5983-4.

Sayler, G. S., & Steven, R., (2000). Field applications of genetically engineered microorganisms

for bioremediation processes. Current Opinion in Biotechnology, 11(3), 286–289. doi:

10.1016/S0958-1669(00)00097-5.

Schaechter, M., (2009). Encyclopedia of Microbiology. Academic Press.

Schiewer, S., & Bohumil, V., (2014). Biosorption processes for heavy metal removal.

Environmental Microbe-Metal Interactions, 329–362. Wiley Online Library. doi:

10.1128/9781555818098.ch14.

Scott, C., Cameron, B., Matthew, J. T., Gunjan, P., Vinko, M., Nigel, F., Clint, B., et al., (2011).

Free-enzyme bioremediation of pesticides: A case study for the enzymatic remediation of

organophosphorus insecticide residues. ACS Symposium Series, 1075, 155–174. American

Chemical Society. doi: 10.1021/bk-2011-1075.ch011.

Shannon, M. C., & Grieve, C. M., (1998). Tolerance of vegetable crops to salinity. Scientia

Horticulturae. Elsevier. doi: 10.1016/S0304-4238(98)00189-7.

Shilev, S., Mladen, N., Ventsislava, V., & Anna, A., (2007). Composting of food and

agricultural wastes. Utilization of By-Products and Treatment of Waste in the Food Industry,

283–301. Springer, Boston, MA. doi: 10.1007/978-0-387-35766-9_15.

Shim, H., & Shang, T. Y., (1999). Biodegradation of benzene, toluene, ethylbenzene, and

o-xylene by a coculture of Pseudomonas Putida and Pseudomonas fluorescens immobilized

in a fibrous-bed bioreactor. Journal of Biotechnology, 67(2, 3), 99–112. Elsevier. doi:

10.1016/S0168-1656(98)00166-7.

Sobariu, D. L., Daniela, I. T. F., Mariana, D., Lucian, V. P., Raluca, M. H., Elena, N. D.,

Silvia, C., et al., (2017). Rhizobacteria and plant symbiosis in heavy metal uptake and

its implications for soil bioremediation. New Biotechnology, 39, 125–134. Elsevier. doi:

10.1016/j.nbt.2016.09.002.

Sochová, I., Jakub, H., & Ivan, H., (2006). Using nematodes in soil ecotoxicology. Environment

International, 32(3), 374–383. Pergamon. doi: 10.1016/j.envint.2005.08.031.

Soleimani, M., Majid, A., Mohammad, A. H., Farshid, N., Mohammad, R. S., & Jan, H. C.,

(2010). Phytoremediation of an aged petroleum contaminated soil using endophyte infected

and non-infected grasses. Chemosphere, 81(9), 1084–1090. Pergamon. doi: 10.1016/j.

chemosphere.2010.09.034.

Sun, L. N., Yan, F. Z., Lin, Y. H., Zhao, J. C., Qing, Y. W., Meng, Q., & Xia, F. S., (2010).

Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from

two copper-tolerant plant species on copper mine wasteland. Bioresource Technology,

101(2), 501–509. Elsevier. doi: 10.1016/j.biortech.2009.08.011.

Tiwari, R. K., Bishnu, M. B., Shanmugam, V., Milan, K. L., Ravinder, K., Sanjeev, S., Kailash,

C. N., et al., (2021). First report of dry rot of potato caused by Fusarium proliferatum in India.

Journal of Plant Diseases and Protection, 1–7. Springer. doi: 10.1007/s41348-021-00556-6.

Tiwari, R. K., Bishnu, M. B., Shanmugam, V., Milan, K. L., Ravinder, K., Sanjeev, S., Vinod,

et al., (2021). Impact of Fusarium dry rot on physicochemical attributes of potato tubers

during postharvest storage. Postharvest Biology and Technology, 181, 111638. Elsevier.

doi: 10.1016/j.postharvbio.2021.111638.

Tiwari, R. K., Milan, K. L., Ravinder, K., Vikas, M., Muhammad, A. A., Sanjeev, S., Brajesh,

S., & Manoj, K., (2021). Insight into melatonin-mediated response and signaling in the

regulation of plant defense under biotic stress. Plant Molecular Biology. Springer. doi:

10.1007/s11103-021-01202-3.